
 A Case Study on the Importance of
 Custom Logger Keys in Scalable

 Products
 Do not fear mistakes. You will know failure. Continue to reach out - Benjamin
 Franklin

 Introduction

 Logging is a very important feature for developers that allows engineers to track

 data, crackdown on errors, and locate bugs. The open source project that we are

 working on is called Fastify and it is a web framework for Node.js. Fastify is

 considered to be one of the most efficient backend frameworks. Not only is logging

 used to help developers maintain projects, having a universal logging theme is

 crucial for the transfer of data and services across a wide range of technologies and

 users.

 Fastify Overview

 This open source project is important as the implementation of custom logging

 keys can enhance efficiency, make products more secure, and help developers

 debug potential issues in their codebase. Having a well documented and well

 structured logging system is crucial for the development of a project as it makes

 troubleshooting incredibly more effective. Having custom logging keys plays a

 crucial role in scalability and places more emphasis on efficient code. The typical

 user of the Fastify project is a developer who works with Node.js, which is a server

 side platform used for web development. Node.js is popular due to its efficient

 nature and ability to quickly develop applications. The Fastify framework is useful

 for web developers as it can help with error handling and has the capability to

 handle an enormous amount of requests at one time.

 Fastify Logs in JSON format on my Local Machine (1.1)

 According to Statista.com, as of 2024, the Fastify API is currently being used in 2.4%

 of all web development projects. According to The Software House , Fastify is

 downloaded at least 700,000 times a week and is being used in about 25,000

 projects at the time this blog is being posted.

 Exploring the Issue

 The issue that we addressed for the project was providing users with the ability to

 create custom logging keys, similar to how pino–http provides. This implementation

 of this feature would make it much simpler to integrate the logger with the Google

 Cloud Structure. Link to issue: https://github.com/fastify/fastify/issues/4413 This

 issue is important to the open source project as it implements a feature that

 already exists with other loggers and has proven to make logging much more

 developer friendly and cost effective. This issue also would invite more developers

 to introduce the Fastify framework into their tech stacks as it would make

 integrating with other technologies seamless. Some of the key locations of the

https://github.com/fastify/fastify/issues/4413

 codebase that are very much relevant to finding the solution to the issue include

 the fastify.d.ts typescript file which handles server requests and logger options.

 A Closer Look at the fastify.d.ts File (2.1)

 The next key location within this codebase is the logger.js file which has code

 imported from pino-http project and this file is responsible for the main

 functionalities of the Fastify logging system and this is where I have hypothesized

 that we will implement our custom logger keys. Some other related files that will

 play a key role in supporting custom attribute keys include the reply.js file and the

 error.js file as they handle response and error logging. Once custom attributes have

 been added to the codebase, they will need to be supported by these files in order

 to provide as much context to developers as possible.

 Definition of Serializers from the ‘logger.js’ file (2.2)

 Understanding the Inspiration

 Although it can be intimidating to begin working on a project of this scale, being

 able to reference examples such as the Pino-HTTP custom logging keys helps in

 translating the solution to the issue into executable code. As mentioned in the issue

 declaration, the inspiration for adding custom attribute keys is derived from

 Located within the Pino-HTTP codebase are many intricate details regarding logging

 keys including, but not limited to custom messages, custom IDs, custom keys,

 custom props, and custom log levels. In terms of what I believe needs to be

 implemented into the Fastify logging system, I believe that most important features

 include custom error messaging, custom IDs, and custom props. Custom error

 messaging will be crucial for Fastify developers who need access to detailed logs

 regarding error locations and additional context of when the error took place. Also,

 custom log IDs will provide developers with the ability to divide their issues into sub

 categories and assign importance to issues based on their needs. Next, custom

 props will enhance the logging experience as they will provide developers with the

 ability to include and/or exclude certain information based on what they view to be

 the most relevant keys that they need.

 Pino-Http Example of Custom Logging Keys (3.1)

 Fastify Codebase Investigation

 As mentioned in the previous section, the most important file locations in the

 Fastify codebase consist of ‘lib/logger.js’, ‘fastify.d.ts’, ‘lib/reply.js’, ‘lib/error.js’.

 ‘lib/logger’ contains the base logic for logger functionality for Fastify. The logger.js

 file contains the necessary logic for creating loggers as well as allowing developers

 to create the logger that fits their technical needs (5.1). ‘fastify.d.ts’ is an important

 logging support file which utilizes specific TypeScript types in order to support

 logging functions such as ‘request’ and ‘reply’. This file will be particularly important

 once custom attribute keys have been implemented as the ‘fastify.d.ts’ file will have

 to be updated in order to support the new custom options. Next, ‘lib/reply.js’ plays

 a crucial role in sending developers log responses and contains the logic for

 supporting HTTP responses.

 Initializing Properties for Logger Response in ‘reply.js’ (3.2)

 Lastly, ‘lib/error.js’ is an extensive file that contains the error response logic that is

 present within Fastify, with detailed and custom error responses for most scenarios

 that a developer may encounter in HTTP request handling.

 The Codebase Skeleton

 Fastify Tech Stack (4.1)

 TECH STACK

 Node.js Used as the primary base of Fastify and
 utilizes an event driven model capable
 of providing efficient and scalable
 network products.

 TypeScript Typescript is utilized for type checking
 and for enhancing logger data in order
 to increase understandability.

 Pino Logger Fastify utilizes the Pino logging system
 which uses the JSON formatting
 schema.

 Overcoming Hurdles

 A technical challenge that I faced in the beginning of this open source journey was

 simply being unable to understand the practical importance of logging and why

 debugging is crucial to the development process. I was able to overcome this

 challenge fairly quickly by researching first hand accounts of the importance of

 logging by software engineers who mentioned how they become more productive

 when they have a standardized way of assessing errors in a codebase. Another

 specific technical challenge that I have faced during this project is losing track in the

 codebase. This challenge makes it difficult to trace functions and variables as they

 operate. Some problem-solving attempts that I have made include making a

 function roadmap which traces the pathway of the createLogger function in the

 logger.js file (5.1). I have also attempted to solve this problem by making

 predictions of how a specific change in the codebase will operate and testing my

 hypothesis. If my hypothesis was correct, then I move on to the next phase of the

 function path, however if I was incorrect, then I form a new hypothesis based on

 the new information I have. This challenge is still prevalent in terms of my ability to

 work through the codebase and implement the features that I am trying to add to

 the project as it is easy to become intimidated by the threat of failure, but I attempt

 to overcome this feeling by improving my technical skills and my critical thinking on

 a daily basis.

 Function Roadmaps

 logger.js Roadmap (5.1)

 And Then There Were Two

 After conducting my research and exploring both the Fastify codebase and the

 Pino-HTTP codebase, I concluded that there are two potential ways forward from

 here:

 - Implement customAttributeKeys within Fastify.

 - Implement customAttributeKeys within Pino.

 Each solution contains its own pros and cons as I will dissect now. Implementing

 customAttributeKeys within Fastify would likely be the more preferable option for

 the Fastify maintainers as it would incorporate custom attribute keys directly inside

 of Fastify instead of needing to synchronize a complex feature with another

 codebase. Also, implementing this feature directly inside Fastify would allow Fastify

 developers to have streamlined access to an important logging feature that would

 help them dramatically improve their efficiency. The major con of implementing

 this feature inside Fastify is that it would increase the complexity of the logging

 system and potentially make debugging harder for a developer. On the other hand,

 implementing customAttributeKeys in Pino would allow Fastify to maintain its

 efficient nature and low overhead capabilities while boosting debugging

 productivity. Plus, implementing customAttributeKeys within Pino would provide a

 more universal feature that could be used in other applications instead of just

 Fastify and it would keep the Fastify codebase simpler, meaning that the learning

 curve for the Fastify codebase would not become steeper. The negative aspect of

 this route is that it would require developers to familiarize themselves with the Pino

 logging system to a greater degree and the actual implementation of custom

 attribute keys would require the developer to have a solid understanding in the

 logical networks utilized in the Pino codebase.

 Summary

 The implementation of custom attribute keys is a necessary utility that would

 drastically improve the organizational structure of the Fastify framework and the

 best solution to this issue would be to implement the custom attribute keys within

 the Pino codebase. By doing so, Fastify would retain its efficient response handling,

 high performance, and low overhead while providing a universal addition to the

 Pino logging system. This is the path that I will take as I continue to work through

 this issue, familiarize myself with the importance of efficient logging standards, and

 help the entire Fastify developer community by enhancing their ability to debug and

 customize logging in a scalable, effective manner.

