A Case Study on the Importance of
Custom Logger Keys in Scalable
Products

Do not fear mistakes. You will know failure. Continue to reach out - Benjamin
Franklin

Introduction

Logging is a very important feature for developers that allows engineers to track
data, crackdown on errors, and locate bugs. The open source project that we are
working on is called Fastify and it is a web framework for Node.js. Fastify is
considered to be one of the most efficient backend frameworks. Not only is logging
used to help developers maintain projects, having a universal logging theme is
crucial for the transfer of data and services across a wide range of technologies and

users.

Fastify Overview

This open source project is important as the implementation of custom logging
keys can enhance efficiency, make products more secure, and help developers
debug potential issues in their codebase. Having a well documented and well
structured logging system is crucial for the development of a project as it makes
troubleshooting incredibly more effective. Having custom logging keys plays a
crucial role in scalability and places more emphasis on efficient code. The typical
user of the Fastify project is a developer who works with Node.js, which is a server

side platform used for web development. Node.js is popular due to its efficient

nature and ability to quickly develop applications. The Fastify framework is useful
for web developers as it can help with error handling and has the capability to

handle an enormous amount of requests at one time.

Tevel": 3, "tine" 1731208917464, "pid" 6134, "hostnane""SHIRABA" "nsg:"Server Listening at http://127.0.0.1:5080"}

"level": 3, "tine" 1731208917465, "pid" 6184, "hostnane" "SHIRABA", ‘msg:"Server Listening at http://10.0.0.223:5008"}

"Tovel": 30, tine":1 , Jid" 6184, "hostnane”:"SAMRABA”,"reqld""req-1", "req"{"method": "GET","urL":"/items","host":"Localhost: 568", renoteAddres:
otePort" 61366}, "msg " Incaning request"}

" Tevel"; 30, tine"1 8, 1id":6184, "hostnane""SANRARA" ,"reqld""req-1", res" {"statusCode" 208}, "respanseTine "3, 852800805477245, "msg . request (¢

Fastify Logs in JSON format on my Local Machine (1.1)

According to Statista.com, as of 2024, the Fastify APl is currently being used in 2.4%
of all web development projects. According to The Software House, Fastify is
downloaded at least 700,000 times a week and is being used in about 25,000

projects at the time this blog is being posted.

Exploring the Issue

The issue that we addressed for the project was providing users with the ability to
create custom logging keys, similar to how pino-http provides. This implementation
of this feature would make it much simpler to integrate the logger with the Google

Cloud Structure. Link to issue: https://github.com/fastify/fastify/issues/4413 This

issue is important to the open source project as it implements a feature that
already exists with other loggers and has proven to make logging much more
developer friendly and cost effective. This issue also would invite more developers
to introduce the Fastify framework into their tech stacks as it would make

integrating with other technologies seamless. Some of the key locations of the

https://github.com/fastify/fastify/issues/4413

codebase that are very much relevant to finding the solution to the issue include

the fastify.d.ts typescript file which handles server requests and logger options.

import {
Fasti

yvBaselLoggenr,
tifyChildLoggerFactory,
FastifylLogFn,
Fastiftytoggerinstance
FastifylLoggerOptions,
LoglLevel ,
PinolLoggerOptions

. ftypes/

A Closer Look at the fastify.d.ts File (2.1)
The next key location within this codebase is the logger.js file which has code

imported from pino-http project and this file is responsible for the main
functionalities of the Fastify logging system and this is where | have hypothesized
that we will implement our custom logger keys. Some other related files that will
play a key role in supporting custom attribute keys include the reply.js file and the
error.js file as they handle response and error logging. Once custom attributes have
been added to the codebase, they will need to be supported by these files in order

to provide as much context to developers as possible.

{
asRegqValue (req) {
return
method: req.method,
url: reg.url,

accept-version'],

version: req.headers && req.headers]
host: req.host,

remoteAddress: req.ip,

remotePort: req.socket ? req.socket.remotePort :

Definition of Serializers from the ‘logger.js’ file (2.2)

Understanding the Inspiration

Although it can be intimidating to begin working on a project of this scale, being
able to reference examples such as the Pino-HTTP custom logging keys helps in
translating the solution to the issue into executable code. As mentioned in the issue
declaration, the inspiration for adding custom attribute keys is derived from
Located within the Pino-HTTP codebase are many intricate details regarding logging
keys including, but not limited to custom messages, custom IDs, custom keys,
custom props, and custom log levels. In terms of what | believe needs to be
implemented into the Fastify logging system, | believe that most important features
include custom error messaging, custom IDs, and custom props. Custom error
messaging will be crucial for Fastify developers who need access to detailed logs
regarding error locations and additional context of when the error took place. Also,
custom log IDs will provide developers with the ability to divide their issues into sub
categories and assign importance to issues based on their needs. Next, custom
props will enhance the logging experience as they will provide developers with the
ability to include and/or exclude certain information based on what they view to be

the most relevant keys that they need.

Pino-Http Example of Custom Logging Keys (3.1)

Fastify Codebase Investigation

As mentioned in the previous section, the most important file locations in the
Fastify codebase consist of ‘lib/logger.js’, ‘fastify.d.ts’, ‘lib/reply.js’, ‘lib/error.js’.
‘lib/logger’ contains the base logic for logger functionality for Fastify. The logger.js
file contains the necessary logic for creating loggers as well as allowing developers
to create the logger that fits their technical needs (5.1). ‘fastify.d.ts’ is an important
logging support file which utilizes specific TypeScript types in order to support
logging functions such as ‘request’ and ‘reply’. This file will be particularly important
once custom attribute keys have been implemented as the ‘fastify.d.ts’ file will have
to be updated in order to support the new custom options. Next, ‘lib/reply.js’ plays
a crucial role in sending developers log responses and contains the logic for

supporting HTTP responses.

Eéply (res, Pehuest, log)
.raw = res
[kReplySerializer] =
[kReplyErrorHandlerCalled] =
[

[

kReplyIsError] =
kReplyIsRunningOnErrorHook]
.request = reguest
[kReplyHeaders] = {}
[kReplyTrailers] =
[kReplyHasStatusCode] =
[kReplyStartTime] =

.log = log

Initializing Properties for Logger Response in ‘reply.js’' (3.2)
Lastly, ‘lib/error.js’ is an extensive file that contains the error response logic that is

present within Fastify, with detailed and custom error responses for most scenarios

that a developer may encounter in HTTP request handling.

The Codebase Skeleton

Pino Logger
(Logging System)

) |

Node.js Typescript
Runtime Environment) (Type Checking)

{ Fastify]

Fastify Tech Stack (4.1)

TECH STAC

Node.js

Used as the primary base of Fastify and
utilizes an event driven model capable
of providing efficient and scalable
network products.

TypeScript

Typescript is utilized for type checking
and for enhancing logger data in order
to increase understandability.

Pino Logger

Fastify utilizes the Pino logging system
which uses the JSON formatting
schema.

Overcoming Hurdles

A technical challenge that | faced in the beginning of this open source journey was
simply being unable to understand the practical importance of logging and why
debugging is crucial to the development process. | was able to overcome this
challenge fairly quickly by researching first hand accounts of the importance of
logging by software engineers who mentioned how they become more productive
when they have a standardized way of assessing errors in a codebase. Another
specific technical challenge that | have faced during this project is losing track in the
codebase. This challenge makes it difficult to trace functions and variables as they
operate. Some problem-solving attempts that | have made include making a
function roadmap which traces the pathway of the createLogger function in the
logger.js file (5.1). | have also attempted to solve this problem by making
predictions of how a specific change in the codebase will operate and testing my
hypothesis. If my hypothesis was correct, then | move on to the next phase of the
function path, however if | was incorrect, then | form a new hypothesis based on
the new information | have. This challenge is still prevalent in terms of my ability to
work through the codebase and implement the features that | am trying to add to
the project as it is easy to become intimidated by the threat of failure, but | attempt
to overcome this feeling by improving my technical skills and my critical thinking on

a daily basis.

Function Roadmaps

Validate inputted
logger method to
ensure that all
requirements are

met

logger.js

Developer Initalizes Logger

|

createLogger

validateLogger

Continue with
Validated Logger

Is Logger Valid

logger.js Roadmap (5.1)

And Then There Were Two

Create a new Pino
based logger based
on Pino options

createPinoLogger

Continue with Pino
Logger

Is Logger Valid

Instantiate Null
Logger

After conducting my research and exploring both the Fastify codebase and the

Pino-HTTP codebase, | concluded that there are two potential ways forward from

here:

- Implement customAttributeKeys within Fastify.

- Implement customAttributeKeys within Pino.

Each solution contains its own pros and cons as | will dissect now. Implementing
customAttributeKeys within Fastify would likely be the more preferable option for
the Fastify maintainers as it would incorporate custom attribute keys directly inside
of Fastify instead of needing to synchronize a complex feature with another
codebase. Also, implementing this feature directly inside Fastify would allow Fastify
developers to have streamlined access to an important logging feature that would
help them dramatically improve their efficiency. The major con of implementing
this feature inside Fastify is that it would increase the complexity of the logging
system and potentially make debugging harder for a developer. On the other hand,
implementing customAttributeKeys in Pino would allow Fastify to maintain its
efficient nature and low overhead capabilities while boosting debugging
productivity. Plus, implementing customAttributeKeys within Pino would provide a
more universal feature that could be used in other applications instead of just
Fastify and it would keep the Fastify codebase simpler, meaning that the learning
curve for the Fastify codebase would not become steeper. The negative aspect of
this route is that it would require developers to familiarize themselves with the Pino
logging system to a greater degree and the actual implementation of custom
attribute keys would require the developer to have a solid understanding in the

logical networks utilized in the Pino codebase.

Summary

The implementation of custom attribute keys is a necessary utility that would
drastically improve the organizational structure of the Fastify framework and the
best solution to this issue would be to implement the custom attribute keys within

the Pino codebase. By doing so, Fastify would retain its efficient response handling,

high performance, and low overhead while providing a universal addition to the
Pino logging system. This is the path that | will take as | continue to work through
this issue, familiarize myself with the importance of efficient logging standards, and
help the entire Fastify developer community by enhancing their ability to debug and

customize logging in a scalable, effective manner.

