
‭A Case Study on the Importance of‬
‭Custom Logger Keys in Scalable‬

‭Products‬
‭Do not fear mistakes. You will know failure. Continue to reach out - Benjamin‬
‭Franklin‬

‭Introduction‬

‭Logging is a very important feature for developers that allows engineers to track‬

‭data, crackdown on errors, and locate bugs. The open source project that we are‬

‭working on is called Fastify and it is a web framework for Node.js. Fastify is‬

‭considered to be one of the most efficient backend frameworks. Not only is logging‬

‭used to help developers maintain projects, having a universal logging theme is‬

‭crucial for the transfer of data and services across a wide range of technologies and‬

‭users.‬

‭Fastify Overview‬

‭This open source project is important as the implementation of custom logging‬

‭keys can enhance efficiency, make products more secure, and help developers‬

‭debug potential issues in their codebase. Having a well documented and well‬

‭structured logging system is crucial for the development of a project as it makes‬

‭troubleshooting incredibly more effective. Having custom logging keys plays a‬

‭crucial role in scalability and places more emphasis on efficient code. The typical‬

‭user of the Fastify project is a developer who works with Node.js, which is a server‬

‭side platform used for web development. Node.js is popular due to its efficient‬

‭nature and ability to quickly develop applications. The Fastify framework is useful‬

‭for web developers as it can help with error handling and has the capability to‬

‭handle an enormous amount of requests at one time.‬

‭Fastify Logs in JSON format on my Local Machine (1.1)‬

‭According to Statista.com, as of 2024, the Fastify API is currently being used in 2.4%‬

‭of all web development projects. According to The‬‭Software House‬‭, Fastify is‬

‭downloaded at least 700,000 times a week and is being used in about 25,000‬

‭projects at the time this blog is being posted.‬

‭Exploring the Issue‬

‭The issue that we addressed for the project was providing users with the ability to‬

‭create custom logging keys, similar to how pino–http provides. This implementation‬

‭of this feature would make it much simpler to integrate the logger with the Google‬

‭Cloud Structure. Link to issue:‬‭https://github.com/fastify/fastify/issues/4413‬ ‭This‬

‭issue is important to the open source project as it implements a feature that‬

‭already exists with other loggers and has proven to make logging much more‬

‭developer friendly and cost effective. This issue also would invite more developers‬

‭to introduce the Fastify framework into their tech stacks as it would make‬

‭integrating with other technologies seamless. Some of the key locations of the‬

https://github.com/fastify/fastify/issues/4413

‭codebase that are very much relevant to finding the solution to the issue include‬

‭the fastify.d.ts typescript file which handles server requests and logger options.‬

‭A Closer Look at the fastify.d.ts File (2.1)‬

‭The next key location within this codebase is the logger.js file which has code‬

‭imported from pino-http project and this file is responsible for the main‬

‭functionalities of the Fastify logging system and this is where I have hypothesized‬

‭that we will implement our custom logger keys. Some other related files that will‬

‭play a key role in supporting custom attribute keys include the reply.js file and the‬

‭error.js file as they handle response and error logging. Once custom attributes have‬

‭been added to the codebase, they will need to be supported by these files in order‬

‭to provide as much context to developers as possible.‬

‭Definition of Serializers from the ‘logger.js’ file (2.2)‬

‭Understanding the Inspiration‬

‭Although it can be intimidating to begin working on a project of this scale, being‬

‭able to reference examples such as the Pino-HTTP custom logging keys helps in‬

‭translating the solution to the issue into executable code. As mentioned in the issue‬

‭declaration, the inspiration for adding custom attribute keys is derived from‬

‭Located within the Pino-HTTP codebase are many intricate details regarding logging‬

‭keys including, but not limited to custom messages, custom IDs, custom keys,‬

‭custom props, and custom log levels. In terms of what I believe needs to be‬

‭implemented into the Fastify logging system, I believe that most important features‬

‭include custom error messaging, custom IDs, and custom props. Custom error‬

‭messaging will be crucial for Fastify developers who need access to detailed logs‬

‭regarding error locations and additional context of when the error took place. Also,‬

‭custom log IDs will provide developers with the ability to divide their issues into sub‬

‭categories and assign importance to issues based on their needs. Next, custom‬

‭props will enhance the logging experience as they will provide developers with the‬

‭ability to include and/or exclude certain information based on what they view to be‬

‭the most relevant keys that they need.‬

‭Pino-Http Example of Custom Logging Keys (3.1)‬

‭Fastify Codebase Investigation‬

‭As mentioned in the previous section, the most important file locations in the‬

‭Fastify codebase consist of ‘lib/logger.js’, ‘fastify.d.ts’, ‘lib/reply.js’, ‘lib/error.js’.‬

‭‘lib/logger’ contains the base logic for logger functionality for Fastify. The logger.js‬

‭file contains the necessary logic for creating loggers as well as allowing developers‬

‭to create the logger that fits their technical needs (5.1). ‘fastify.d.ts’ is an important‬

‭logging support file which utilizes specific TypeScript types in order to support‬

‭logging functions such as ‘request’ and ‘reply’. This file will be particularly important‬

‭once custom attribute keys have been implemented as the ‘fastify.d.ts’ file will have‬

‭to be updated in order to support the new custom options. Next, ‘lib/reply.js’ plays‬

‭a crucial role in sending developers log responses and contains the logic for‬

‭supporting HTTP responses.‬

‭Initializing Properties for Logger Response in ‘reply.js’ (3.2)‬

‭Lastly, ‘lib/error.js’ is an extensive file that contains the error response logic that is‬

‭present within Fastify, with detailed and custom error responses for most scenarios‬

‭that a developer may encounter in HTTP request handling.‬

‭The Codebase Skeleton‬

‭Fastify Tech Stack (4.1)‬

‭TECH STACK‬

‭Node.js‬ ‭Used as the primary base of Fastify and‬
‭utilizes an event driven model capable‬
‭of providing efficient and scalable‬
‭network products.‬

‭TypeScript‬ ‭Typescript is utilized for type checking‬
‭and for enhancing logger data in order‬
‭to increase understandability.‬

‭Pino Logger‬ ‭Fastify utilizes the Pino logging system‬
‭which uses the JSON formatting‬
‭schema.‬

‭Overcoming Hurdles‬

‭A technical challenge that I faced in the beginning of this open source journey was‬

‭simply being unable to understand the practical importance of logging and why‬

‭debugging is crucial to the development process. I was able to overcome this‬

‭challenge fairly quickly by researching first hand accounts of the importance of‬

‭logging by software engineers who mentioned how they become more productive‬

‭when they have a standardized way of assessing errors in a codebase. Another‬

‭specific technical challenge that I have faced during this project is losing track in the‬

‭codebase. This challenge makes it difficult to trace functions and variables as they‬

‭operate. Some problem-solving attempts that I have made include making a‬

‭function roadmap which traces the pathway of the createLogger function in the‬

‭logger.js file (5.1). I have also attempted to solve this problem by making‬

‭predictions of how a specific change in the codebase will operate and testing my‬

‭hypothesis. If my hypothesis was correct, then I move on to the next phase of the‬

‭function path, however if I was incorrect, then I form a new hypothesis based on‬

‭the new information I have. This challenge is still prevalent in terms of my ability to‬

‭work through the codebase and implement the features that I am trying to add to‬

‭the project as it is easy to become intimidated by the threat of failure, but I attempt‬

‭to overcome this feeling by improving my technical skills and my critical thinking on‬

‭a daily basis.‬

‭Function Roadmaps‬

‭logger.js Roadmap (5.1)‬

‭And Then There Were Two‬

‭After conducting my research and exploring both the Fastify codebase and the‬

‭Pino-HTTP codebase, I concluded that there are two potential ways forward from‬

‭here:‬

‭-‬ ‭Implement customAttributeKeys within Fastify.‬

‭-‬ ‭Implement customAttributeKeys within Pino.‬

‭Each solution contains its own pros and cons as I will dissect now. Implementing‬

‭customAttributeKeys within Fastify would likely be the more preferable option for‬

‭the Fastify maintainers as it would incorporate custom attribute keys directly inside‬

‭of Fastify instead of needing to synchronize a complex feature with another‬

‭codebase. Also, implementing this feature directly inside Fastify would allow Fastify‬

‭developers to have streamlined access to an important logging feature that would‬

‭help them dramatically improve their efficiency. The major con of implementing‬

‭this feature inside Fastify is that it would increase the complexity of the logging‬

‭system and potentially make debugging harder for a developer. On the other hand,‬

‭implementing customAttributeKeys in Pino would allow Fastify to maintain its‬

‭efficient nature and low overhead capabilities while boosting debugging‬

‭productivity. Plus, implementing customAttributeKeys within Pino would provide a‬

‭more universal feature that could be used in other applications instead of just‬

‭Fastify and it would keep the Fastify codebase simpler, meaning that the learning‬

‭curve for the Fastify codebase would not become steeper. The negative aspect of‬

‭this route is that it would require developers to familiarize themselves with the Pino‬

‭logging system to a greater degree and the actual implementation of custom‬

‭attribute keys would require the developer to have a solid understanding in the‬

‭logical networks utilized in the Pino codebase.‬

‭Summary‬

‭The implementation of custom attribute keys is a necessary utility that would‬

‭drastically improve the organizational structure of the Fastify framework and the‬

‭best solution to this issue would be to implement the custom attribute keys within‬

‭the Pino codebase. By doing so, Fastify would retain its efficient response handling,‬

‭high performance, and low overhead while providing a universal addition to the‬

‭Pino logging system. This is the path that I will take as I continue to work through‬

‭this issue, familiarize myself with the importance of efficient logging standards, and‬

‭help the entire Fastify developer community by enhancing their ability to debug and‬

‭customize logging in a scalable, effective manner.‬

